User Tools

Site Tools


mess:radiometer

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
mess:radiometer [2018/04/12 15:32] sarinamess:radiometer [2020/02/23 14:16] – [Literatur] sarina
Line 9: Line 9:
 Anstelle einer Photodiode, die empfindlich im UV-Bereich ist, kann auch eine Photodiode für den sichtbaren Bereich zusammen mit einem Leuchtstoff, der UV-Strahlung in sichtbares Licht umwandelt verwendet werden. Ein solches Messgerät wurde in den 1950ern von Robertson in Australien entwickelt und von Berger in den USA modifiziert. Diese Variante ist meines Wissens nach nicht häufig im Einsatz. Anstelle einer Photodiode, die empfindlich im UV-Bereich ist, kann auch eine Photodiode für den sichtbaren Bereich zusammen mit einem Leuchtstoff, der UV-Strahlung in sichtbares Licht umwandelt verwendet werden. Ein solches Messgerät wurde in den 1950ern von Robertson in Australien entwickelt und von Berger in den USA modifiziert. Diese Variante ist meines Wissens nach nicht häufig im Einsatz.
  
-Gegenüber Spektrometer haben Radiometer Vorteile: Sie sind leicht zu transportieren, leicht zu bedienen und zeigen nur eine einzige Zahl als Messwert an. Auch Reproduzierbarkeit der Messergebnisse, Auflösung und Signal-zu-Rausch-Verhältnis ist bei Radiometern ist oft besser als bei Spektrometern. Gerade für den UV-Bereich sind Radiometer robuster als Spektrometer {{wikindx>678}}.+Gegenüber Spektrometer haben Radiometer Vorteile: Sie sind leicht zu transportieren, leicht zu bedienen und zeigen nur eine einzige Zahl als Messwert an. Auch Reproduzierbarkeit der Messergebnisse, Auflösung und Signal-zu-Rausch-Verhältnis ist bei Radiometern ist oft besser als bei Spektrometern. Gerade für den UV-Bereich sind Radiometer robuster als Spektrometer {{wkx>678}}.
  
-Radiometer haben aber natürlich auch Nachteile, die zu verschiedenen statistischen und systematischen Fehlern führen {{wikindx>112}}{{wikindx>280}}. Viele der Fehler sind für die typischen Einsatzzwecke in der Terraristik vernachlässigbar: Sowohl die spektrale als auch die absolute Empfindlichkeit des Radiometers kann //temperaturabhängig// sein, so dass ein Messgerät das durch die Wärmestrahlung der Lampe aufgeheizt wird, veränderte Werte liefert. Beim einem Solarmeter 6.2 wurde eine sehr geringe Erhöhung der Messwerte bei Temperaturen größer als 40°C ermittelt {{wikindx>172}}. Bei Messgeräten mit einem großen Eingang, kann eine //inhomogene Lichtverteilung// über die Sensorfläche und das Gesichtsfeld des Sensors den Messwert verfälschen ({{wikindx>117}},{{wikindx>280}}). Auch eine //Modulation// der Lichtintensität, z.B. bei stark flackernden Mischlichtlampen kann falsche Messwerte erzeugen. Insbesondere wenn sehr kleine Messwerte gemessen werden sollen, spielt das statistische Dunkelsignal der Photodiode eine Rolle. Das //Rauschen// von Radiometern ist aber - vor allem im Vergleich zu günstigen Spektrometern - sehr gering. Durch den Einfluss der UV-Strahlung können UV-Radiometer //altern//. Es ist empfehlenswert, regelmäßig eine Vergleichsmessung mit einer Lichtquelle bekannter UV-Strahlung oder mit einem wenig genutzten UV-Radiometer durchzuführen. Photodioden zeichnen sich normalerweise durch eine hohe //Linearität// aus, d.h. bei doppelter Bestrahlungsstärke zeigt das Radiometer auch tatsächlich den doppelten Wert an. Es gibt jedoch auch defekte Messgeräte, bei denen das nicht mehr der Fall ist. In {{wikindx>121}} wurde ein älteres UVB-Radiometer gefunden, das bei hohen Bestrahlungsstärken einen um den Faktor 4 zu großen Messwert anzeigte. Dieser Fall ist selten, aber man sollte wissen, dass das möglich ist.+Radiometer haben aber natürlich auch Nachteile, die zu verschiedenen statistischen und systematischen Fehlern führen {{wkx>112}}{{wkx>280}}. Viele der Fehler sind für die typischen Einsatzzwecke in der Terraristik vernachlässigbar: Sowohl die spektrale als auch die absolute Empfindlichkeit des Radiometers kann //temperaturabhängig// sein, so dass ein Messgerät das durch die Wärmestrahlung der Lampe aufgeheizt wird, veränderte Werte liefert. Beim einem Solarmeter 6.2 wurde eine sehr geringe Erhöhung der Messwerte bei Temperaturen größer als 40°C ermittelt {{wkx>172}}. Bei Messgeräten mit einem großen Eingang, kann eine //inhomogene Lichtverteilung// über die Sensorfläche und das Gesichtsfeld des Sensors den Messwert verfälschen ({{wkx>117}},{{wkx>280}}). Auch eine //Modulation// der Lichtintensität, z.B. bei stark flackernden Mischlichtlampen kann falsche Messwerte erzeugen. Insbesondere wenn sehr kleine Messwerte gemessen werden sollen, spielt das statistische Dunkelsignal der Photodiode eine Rolle. Das //Rauschen// von Radiometern ist aber - vor allem im Vergleich zu günstigen Spektrometern - sehr gering. Durch den Einfluss der UV-Strahlung können UV-Radiometer //altern//. Es ist empfehlenswert, regelmäßig eine Vergleichsmessung mit einer Lichtquelle bekannter UV-Strahlung oder mit einem wenig genutzten UV-Radiometer durchzuführen. Photodioden zeichnen sich normalerweise durch eine hohe //Linearität// aus, d.h. bei doppelter Bestrahlungsstärke zeigt das Radiometer auch tatsächlich den doppelten Wert an. Es gibt jedoch auch defekte Messgeräte, bei denen das nicht mehr der Fall ist. In {{wkx>121}} wurde ein älteres UVB-Radiometer gefunden, das bei hohen Bestrahlungsstärken einen um den Faktor 4 zu großen Messwert anzeigte. Dieser Fall ist selten, aber man sollte wissen, dass das möglich ist.
  
 Ein wichtiger Fehlerbeitrag ist die Kosinuskorrektur des Radiometers (siehe detaillierter auch Abschnitt [[mess/spektrometer_kalibration#Kosinuskorrektur]] unter Spektrometer). Wenn die Sonne schräg auf eine Fläche scheint, verringert sich die Intensität der Strahlung auf der Oberfläche. Messgeräte reagieren nicht immer richtig auf Licht aus verschiedenen Winkeln. Eine entsprechend dimensionierte Streuscheibe mit Abschattungsringen kann das korrigieren.  Ein wichtiger Fehlerbeitrag ist die Kosinuskorrektur des Radiometers (siehe detaillierter auch Abschnitt [[mess/spektrometer_kalibration#Kosinuskorrektur]] unter Spektrometer). Wenn die Sonne schräg auf eine Fläche scheint, verringert sich die Intensität der Strahlung auf der Oberfläche. Messgeräte reagieren nicht immer richtig auf Licht aus verschiedenen Winkeln. Eine entsprechend dimensionierte Streuscheibe mit Abschattungsringen kann das korrigieren. 
Line 32: Line 32:
 Misst man mit dem oben gezeigten UVB-Radiometer eine Lampe ohne UVB-Strahlung aber viel UVA-Strahlung, so wird das Messgerät einen Wert anzeigen, obwohl keine UVB-Strahlung vorhanden ist. Misst man eine Lampe mit UVB-Strahlung aber gänzlich ohne UVA-Strahlung, so wird der angezeigte Messwert zu klein sein: Das Messgerät "denkt" das auch UVA vorhanden wäre und korrigiert den Messwert nach unten. Misst man mit dem oben gezeigten UVB-Radiometer eine Lampe ohne UVB-Strahlung aber viel UVA-Strahlung, so wird das Messgerät einen Wert anzeigen, obwohl keine UVB-Strahlung vorhanden ist. Misst man eine Lampe mit UVB-Strahlung aber gänzlich ohne UVA-Strahlung, so wird der angezeigte Messwert zu klein sein: Das Messgerät "denkt" das auch UVA vorhanden wäre und korrigiert den Messwert nach unten.
  
-Dieser Fehler kann sehr dramatische Formen annehmen. Häufig zitiert wird im Terrarianerkreisen die Arbeit von Sayre & Kligman {{wikindx>667}}. Sie verwendeten als UVB-Radiometer einen leider nicht näher spezifizierten Sensor von International Light mit maximaler Empfindlichkeit bei 290 nm. Als Lampe verwendeten sie eine Xenon-Kurzbogenlampe, deren Spektrum zusätzlich durch optische Langpassfilter verädert wurde. Ein WG-345-Filter lässt Strahlung mit einer Wellenlänge größer als 345 nm zu 90% passieren und absorbiert Strahlung mit einer Wellenlänge kleiner als 345 nm. Folgende Messwerte haben sie erhalten:+Dieser Fehler kann sehr dramatische Formen annehmen. Häufig zitiert wird im Terrarianerkreisen die Arbeit von Sayre & Kligman {{wkx>667}}. Sie verwendeten als UVB-Radiometer einen leider nicht näher spezifizierten Sensor von International Light mit maximaler Empfindlichkeit bei 290 nm. Als Lampe verwendeten sie eine Xenon-Kurzbogenlampe, deren Spektrum zusätzlich durch optische Langpassfilter verädert wurde. Ein WG-345-Filter lässt Strahlung mit einer Wellenlänge größer als 345 nm zu 90% passieren und absorbiert Strahlung mit einer Wellenlänge kleiner als 345 nm. Folgende Messwerte haben sie erhalten:
 ^  Filter  ^  UVB (290 - 320)\\ spektral gemessen  ^  UVB-Messwert\\ Radiometer  ^  relativer\\ Fehler  ^  Beurteilung  ^ ^  Filter  ^  UVB (290 - 320)\\ spektral gemessen  ^  UVB-Messwert\\ Radiometer  ^  relativer\\ Fehler  ^  Beurteilung  ^
 |  WG-320  |  600 µW/cm² |  38 µW/cm² |  $\frac{600}{38}=\frac{16}{1}$, $\frac{38-600}{600}=-94\%$  | besorgniserregender Fehler, \\ der einem Terrarianer im \\ Vergleich zum Sonnenlicht \\ aber aufgefallen wäre.  | |  WG-320  |  600 µW/cm² |  38 µW/cm² |  $\frac{600}{38}=\frac{16}{1}$, $\frac{38-600}{600}=-94\%$  | besorgniserregender Fehler, \\ der einem Terrarianer im \\ Vergleich zum Sonnenlicht \\ aber aufgefallen wäre.  |
Line 39: Line 39:
 |  WG-360  |  0,16 µW/cm² |  4.1 µW/cm² |  $\frac{0,16}{4,1}=\frac{1}{25}$, $\frac{4,1-0,16}{0,16}=2460\%$  | kein relevanter Fehler,\\ da Messwert korrekt nahe Null  | |  WG-360  |  0,16 µW/cm² |  4.1 µW/cm² |  $\frac{0,16}{4,1}=\frac{1}{25}$, $\frac{4,1-0,16}{0,16}=2460\%$  | kein relevanter Fehler,\\ da Messwert korrekt nahe Null  |
  
-Manche lehnen UV-Radiometer in der Terraristik aufgrund dieser Fehler vollständig ab {{wikindx>668;863}}. Ich teile diese Ansicht nicht, aus mehreren Gründen:+Manche lehnen UV-Radiometer in der Terraristik aufgrund dieser Fehler vollständig ab {{wkx>668;863}}. Ich teile diese Ansicht nicht, aus mehreren Gründen:
   * Die Fehler sind keinesfalls zufällig sondern lassen sich aus den Spektren und der spektralen Empfindlichkeitskurve erklären. Leider machen die Autoren keine näheren Angaben, welchen UVB-Sensor sie 1991 verwendet haben, ich verwende für die Erklärung daher einen der UVB-Sensoren, die 2015 auf der Webseite von IL abgebildet sind.\\ Die WG-360- und WG-345-Filter lassen so gut wie keine UVB-Strahlung durch. Das Spektrometer zeigt daher korrekt Werte < 0,3 µW/cm² an. Weil das UVB-Radiometer aber nicht nur UVB-Strahlung sondern auch UVA-Strahlung misst, zeigt es einen zu großen Wert an. Der WG-320-Filter lässt sehr wenig Strahlung unterhalb von 320 nm passieren, wovon die meiste Strahlung nahe an der Grenze zu 320 nm sitzt. Für ein Spektrometer zählt die Strahlung bei 319 nm bereits zu 100% als UVB-Strahlung. Das UVB-Radiometer zählt diese Strahlung nur zu 25%. Es ist daher verständlich, dass das Radiometer einen zu kleinen Wert anzeigt. [{{:mess:sayre_kligman.png?600 |Lichtquellen aus Sayre&Kligman zusammen mit der möglichen spektrale Empfindlichkeit des UVB-Radiometers }}]{{clear}}   * Die Fehler sind keinesfalls zufällig sondern lassen sich aus den Spektren und der spektralen Empfindlichkeitskurve erklären. Leider machen die Autoren keine näheren Angaben, welchen UVB-Sensor sie 1991 verwendet haben, ich verwende für die Erklärung daher einen der UVB-Sensoren, die 2015 auf der Webseite von IL abgebildet sind.\\ Die WG-360- und WG-345-Filter lassen so gut wie keine UVB-Strahlung durch. Das Spektrometer zeigt daher korrekt Werte < 0,3 µW/cm² an. Weil das UVB-Radiometer aber nicht nur UVB-Strahlung sondern auch UVA-Strahlung misst, zeigt es einen zu großen Wert an. Der WG-320-Filter lässt sehr wenig Strahlung unterhalb von 320 nm passieren, wovon die meiste Strahlung nahe an der Grenze zu 320 nm sitzt. Für ein Spektrometer zählt die Strahlung bei 319 nm bereits zu 100% als UVB-Strahlung. Das UVB-Radiometer zählt diese Strahlung nur zu 25%. Es ist daher verständlich, dass das Radiometer einen zu kleinen Wert anzeigt. [{{:mess:sayre_kligman.png?600 |Lichtquellen aus Sayre&Kligman zusammen mit der möglichen spektrale Empfindlichkeit des UVB-Radiometers }}]{{clear}}
   * Der einzig wirklich besorgniserregende Fehler ist der Messwert mit WG-320-Filter: 38 µW/cm² anstelle von 600 µW/cm². So große Fehler kenne ich von anderen UVB-Radiometern nicht. Vielleicht war dieses Radiometer bereits alt und defekt, vielleicht war es auf besonders seltsame Weise kalibriert. Einem Terrarianer wäre das aber aufgefallen: Das Spektrum mit WG-320-Filter ist sehr ähnlich zum Sonnenspektrum in Südeuropa zur Mittagszeit. Dort erwartet man UVB-Messwerte größer als 400 µW/cm². Misst ein Terrarianer hier lediglich 38 µW/cm² wird er sicherlich skeptisch. Trotzdem sind UVB-Radiometer wegen der spektralen Empfindlichkeit insbesondere bei Terrarien-UV-Lampen mit wenig sonnenähnlichen Spektren sehr fehleranfällig und ich rate von ihrem Einsatz ab.   * Der einzig wirklich besorgniserregende Fehler ist der Messwert mit WG-320-Filter: 38 µW/cm² anstelle von 600 µW/cm². So große Fehler kenne ich von anderen UVB-Radiometern nicht. Vielleicht war dieses Radiometer bereits alt und defekt, vielleicht war es auf besonders seltsame Weise kalibriert. Einem Terrarianer wäre das aber aufgefallen: Das Spektrum mit WG-320-Filter ist sehr ähnlich zum Sonnenspektrum in Südeuropa zur Mittagszeit. Dort erwartet man UVB-Messwerte größer als 400 µW/cm². Misst ein Terrarianer hier lediglich 38 µW/cm² wird er sicherlich skeptisch. Trotzdem sind UVB-Radiometer wegen der spektralen Empfindlichkeit insbesondere bei Terrarien-UV-Lampen mit wenig sonnenähnlichen Spektren sehr fehleranfällig und ich rate von ihrem Einsatz ab.
Line 85: Line 85:
 {{clear}} {{clear}}
  
-Der Kalibrierungsfaktor wird so bestimmt, dass der Radiometer-Messwert für eine Kalibrierungslampe mit dem spektral ermittelten Messwert übereinstimmt. Dabei kann sowohl eine breitbandige Lichtquelle als auch ein Linienstrahler verwendet werden {{wikindx>120}}. Als Linienstrahler wird üblicherweise eine [[:mlr:funktion|Quecksilberdampflampe]] (254 nm, 313 nm, 365 nm) verwendet. Um den korrekten Messwert zu bestimmen, kann die Lampe mit einem einfachen Powermeter gemessen werden. Diese Methode ist schnell, einfach und sehr gut reproduzierbar. Bei Kalibration mit einer Linienlichtquelle liefert die Messung Bestrahlungsstärke einer breitbandingen Lichtquelle oft einen zu kleinen Wert, die Messung einer Linienlichtquelle einen zu hohen Wert {{wikindx>119}}. Für Anwendungen im medizinischen Bereich wird meist mit einer breitbandigen Lichtquelle kalibriert. Dazu muss die breitbandige Lichtquelle zusätzlich mit einem Spektrometer vermessen werden, um herauszufinden, welcher Wert der korrekte Messwert ist.+Der Kalibrierungsfaktor wird so bestimmt, dass der Radiometer-Messwert für eine Kalibrierungslampe mit dem spektral ermittelten Messwert übereinstimmt. Dabei kann sowohl eine breitbandige Lichtquelle als auch ein Linienstrahler verwendet werden {{wkx>120}}. Als Linienstrahler wird üblicherweise eine [[:mlr:funktion|Quecksilberdampflampe]] (254 nm, 313 nm, 365 nm) verwendet. Um den korrekten Messwert zu bestimmen, kann die Lampe mit einem einfachen Powermeter gemessen werden. Diese Methode ist schnell, einfach und sehr gut reproduzierbar. Bei Kalibration mit einer Linienlichtquelle liefert die Messung Bestrahlungsstärke einer breitbandingen Lichtquelle oft einen zu kleinen Wert, die Messung einer Linienlichtquelle einen zu hohen Wert {{wkx>119}}. Für Anwendungen im medizinischen Bereich wird meist mit einer breitbandigen Lichtquelle kalibriert. Dazu muss die breitbandige Lichtquelle zusätzlich mit einem Spektrometer vermessen werden, um herauszufinden, welcher Wert der korrekte Messwert ist.
  
  [{{:uv:radiometer_2.png?300|Messwert des UVB-Radiometers}}][{{:uv:radiometer_3.png?300|Spektral ermittelter UVB Messwert}}]  [{{:uv:radiometer_2.png?300|Messwert des UVB-Radiometers}}][{{:uv:radiometer_3.png?300|Spektral ermittelter UVB Messwert}}]
Line 98: Line 98:
 \] \]
  
-Wenn das Spektrum der Kalibrierungslampe, die spektrale Empfindlichkeit des Messgeräts und das Spektrum der Lampe bekannt sind, kann man den entsprechenden Korrekturfaktor $a$ direkt berechnen {{wikindx>38;119}}.+Wenn das Spektrum der Kalibrierungslampe, die spektrale Empfindlichkeit des Messgeräts und das Spektrum der Lampe bekannt sind, kann man den entsprechenden Korrekturfaktor $a$ direkt berechnen {{wkx>38;119}}.
  
 \[ \[
Line 135: Line 135:
 ^  300 µW/cm²    327 µW/cm²    46,8 µW/cm²  | ^  300 µW/cm²    327 µW/cm²    46,8 µW/cm²  |
  
-Der Korrekturfaktur muss für jedes Messgerät ($A(\lambda)$ mit Kalibrierung $K$) und jede gewünschte Anwendung (Wirkungsspektrum $W(\lambda)$ und Lampe $E_\lambda(\lambda)$) bestimmt werden. Will man die Abhängigkeit von der konkreten Lampe reduzieren, bietet sich, der "Integral characterisation factor" $f_1'$ an {{wikindx>112}}+Der Korrekturfaktur muss für jedes Messgerät ($A(\lambda)$ mit Kalibrierung $K$) und jede gewünschte Anwendung (Wirkungsspektrum $W(\lambda)$ und Lampe $E_\lambda(\lambda)$) bestimmt werden. Will man die Abhängigkeit von der konkreten Lampe reduzieren, bietet sich, der "Integral characterisation factor" $f_1'$ an {{wkx>112}}
 (( ((
 Um den Einfluss des verwendeten Kalibrationsspektrums $S_\mathrm{K}(\lambda)$ zu eliminieren, kann $E^\mathrm{kalibr.}_\lambda(\lambda)=1$ gesetzt werden. In diesem Fall kann man einen Faktor  Um den Einfluss des verwendeten Kalibrationsspektrums $S_\mathrm{K}(\lambda)$ zu eliminieren, kann $E^\mathrm{kalibr.}_\lambda(\lambda)=1$ gesetzt werden. In diesem Fall kann man einen Faktor 
Line 150: Line 150:
  
  
-Übersicht über einige Korrekturfaktoren, siehe auch {{wikindx>668}}+Übersicht über einige Korrekturfaktoren, siehe auch {{wkx>668}}
  
 ^  Quelle  ^  Lichtquelle  ^  Messbereich  ^  Abweichung\\  Breitband/Spektrometer  ^ spektraler\\ Korrekturfaktor ^    ^  Quelle  ^  Lichtquelle  ^  Messbereich  ^  Abweichung\\  Breitband/Spektrometer  ^ spektraler\\ Korrekturfaktor ^   
Line 175: Line 175:
 ====== Literatur ====== ====== Literatur ======
  
-{{wxblind>763;119;676;38;277;667;474;320}} +{{wkxblind>763;119;676;38;277;667;474;320}} 
  
-{{wikindxbib}}+{{wkxbib}}
  
mess/radiometer.txt · Last modified: 2023/06/18 11:04 by sarina

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki